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5 so 2C - 2 = I, and hence C = ~. With this value of C we obtain the desired solution 

I 2 
y(x) = -- = --. 

l_x 3-2x 
2 

Figure 1.1.7 shows the two branches of the graph y = 2/(3- 2x). The left-hand branch 
the graph on ( -oo, ~) of the solution of the given initial value problem y' = y2 , y (I) = 

The right -hand branch passes through the point (2, - 2) and is therefore the graph on ( ~, c 
of the solution of the different initial value problemy' = y 2 , y(2) = -2. 

X 

FIGURE 1.1.7. The solutions of 
y' = y 2 defined by 
y(x) = 2/(3- 2x). 

The central question of greatest immediate interest to us is this: If we are givt 
a differential equation known to have a solution satisfying a given initial conditio 
how do we actually find or compute that solution? And, once found, what can we c 
with it? We will see that a relatively few simple techniques-separation of variablt 
(Section 1.4), solution of linear equations (Section 1.5), elementary substitutic 
methods (Section 1.6)-are enough to enable us to solve a variety of first-ordt 
equations having impressive applications. 

llll _ _!lrohlems _ _ _ 
In Problems 1 through 12, verify by substitution that each 
given function is a solution of the given differential equation. 
Throughout these problems, primes denote derivatives with re­
spect to x. 

1. y' = 3x2 ; y = x 3 + 7 
2. y' + 2y = 0; y = 3e-2x 

3. y" + 4y = 0; Yl = cos2x, Y2 = sin2x 
4. y" = 9y; Yl = e3x, Y2 = e-3x 
5. y' = y + 2e-x; y = ex -e-x 

6. y" + 4y' + 4y = 0; Yl = e-2x, Y2 = xe-2x 
7. y"- 2y' + 2y = 0; Yl =ex cosx, Y2 =ex sinx 
8. y" + y = 3 cos 2x, y 1 = cos x -cos 2x, Y2 = sin x -cos 2x 

I 
9. y' + 2xy2 = 0; y = -­

I+ x 2 

1 
10. x 2 y" + x y' - y = In x; y 1 = x - In x, Y2 = - - In x 

X 

I lnx 
11. x2 y" + 5xy' + 4y = 0; Yl = 2• Y2 = -z 

X X 

12. x 2 y"- xy' + 2y = 0; Yl = x cos(ln x), Y2 = x sin(lnx) 

In Problems 13 through 16, substitute y = erx into the given 
differential equation to determine all values of the constant r 
for which y = erx is a solution of the equation. 

13. 3y' = 2y 14. 4y" = y 

15. y" + y' - 2y = 0 16. 3y" + 3y'- 4y = 0 

In Problems 17 through 26, first verify that y(x) satisfies the 
given differential equation. Then determine a value of the con­
stant C so that y(x) satisfies the given initial condition. Use a 
computer or graphing calculator (if desired) to sketch several 
typical solutions of the given differential equation, and high­
light the one that satisfies the given initial condition. 

17. y' + y = 0; y(x) = Ce-x, y(O) = 2 
18. y' = 2y; y(x) = Ce2x, y(O) = 3 
19. y' = y +I; y(x) = Cex- I, y(O) = 5 

----- -~------- ------ --·----------~-~---

20. y' =X- y; y(x) = ce-X +X- I, y(O) = 10 

2L y' + 3x2 y = 0; y(x) = ce-x
3

, y(O) = 7 
22. eYy' =I; y(x) = ln(x +C), y(O) = 0 

dy 1 
23. X dx + 3y = 2x5 ; y(x) = 4x 5 + cx-3, y(2) =I 

24. xy'- 3y = x 3; y(x) = x 3 (C + lnx), y(I) = I7 
25. y' = 3x2 (y 2 +I); y(x) = tan(x 3 +C), y(O) =I 
26. y' + ytanx = cosx; y(x) = (x + C)cosx, y(n) = 0 

In Problems 27 through 31, a function y = g(x) is describec. 
by some geometric property of its graph. Write a differentim 
equation of the form dyjdx = f(x, y) having the function gas 
its solution (or as one of its solutions). 

27. The slope of the graph of g at the point (x, y) is the sum 
of x andy. 

28. The line tangent to the graph of g at the point (x, y) inter­
sects the x-axis at the point (x/2, 0). 

29. Every straight line normal to the graph of g passes through 
the point (0, I). Can you guess what the graph of such a 
function g might look like? 

30. The graph of g is normal to every curve of the form 
y = x 2 + k (k is a constant) where they meet. 

31. The line tangent to the graph of gat (x, y) passes through 
the point (-y,x). 

Differential Equations as Models 
In Problems 32 through 36, write-in the manner of Eqs. ( 3) 
through (6) of this section-a differential equation that is a 
mathematical model of the situation described. 

32. The time rate of change of a population P is proportional 
to the square root of P. 

33. The time rate of change of the velocity v of a coasting 
motorboat is proportional to the square of v. 

34. The acceleration dvjdt of a Lamborghini is proportional 
to the difference between 250 km/h and the velocity of the 
car. 

I 
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35. In a city having a fixed population of P persons, the time 
rate of change of the number N of those persons who have 
heard a certain rumor is proportional to the number of 
those who have not yet heard the rumor. 

36. In a city with a fixed population of P persons, the time rate 
of change of the number N of those persons infected with 
a certain contagious disease is proportional to the product 
of the number who have the disease and the number who 
do not. 

In Problems 37 through 42, determine by inspection at least 
one solution of the given differential equation. That is, use 
your knowledge of derivatives to make an intelligent guess. 
Then test your hypothesis. 

37. y" = 0 
39. xy' + y = 3x2 

41. y' + y =ex 

38. y' = y 
40. (y')2 + y 2 = 1 
42. y" + y = 0 

Problems 43 through 46 concern the differential equation 

dx- k 2 dt- X, 

where k is a constant. 

43. (a) If k is a constant, show that a general (one-parameter) 
solution of the differential equation is given by x(t) = 
1/(C- kt), where Cis an arbitrary constant. 

(b) Determine by inspection a solution of the initial value 
problem x' = kx 2 , x(O) = 0. 

44. (a) Assume that k is positive, and then sketch graphs of 
solutions of x' = kx2 with several typical positive 
values of x(O). 

(b) How would these solutions differ if the constant k 
were negative? 

45. Suppose a population P of rodents satisfies the differen­
tial equation dPjdt = kP 2 . Initially, there are P(O) = 

2 

C=-4 
-1 

-2 

C=4 

X 

FIGURE 1.1.8. Graphs of solutions of the 
equation dyfdx = y 2. 

2 rodents, and their number is increasing at the rate of 
dPjd1 = 1 rodent per month when there are P = 10 ro­
dents. Based on the result of Problem 43, how long will it 
take for this population to grow to a hundred rodents? To 
a thousand? What's happening here? 

46. Suppose the velocity v of a motorboat coasting in water 
satisfies the differential equation dvjdt = kv 2 . The ini­
tial speed of the motorboat is v(O) = 10 meters per sec­
ond (m/s), and v is decreasing at the rate of 1 mjs2 when 
v = 5 mjs. Based on the result of Problem 43, long does 
it take for the velocity of the boat to decrease to 1 m/s? 
To l0 mjs? When does the boat come to a stop? 

47. In Example 7 we saw that y(x) = 1/(C - x) defines a 
one-parameter family of solutions of the differential equa­
tion dyjdx = y 2 . (a) Determine a value of C so that 
y(10) = 10. (b) Is there a value of C such that y(O) = 0? 
Can you nevertheless find by inspection a solution of 
dyjdx = y 2 such that y(O) = 0? (c) Figure 1.1.8 shows 
typical graphs of solutions of the form y(x) = 1/(C- x). 
Does it appear that these solution curves fill the entire xy­
plane? Can you conclude that, given any point (a, b) in 
the plane, the differential equation dyjdx = y 2 has ex­
actly one solution y(x) satisfying the condition y(a) = b? 

48. (a) Show that y(x) = Cx4 defines a one-parameter fam­
ily of differentiable solutions of the differential equation 
xy' = 4y (Fig. 1.1.9). (b) Show that 

if X< 0, 

if X~ 0 

defines a differentiable solution of x y' = 4 y for all x, but is 
not of the form y(x) = Cx 4 . (c) Given any two real num­
bers a and b, explain why-in contrast to the situation in 
part (c) of Problem 47-there exist infinitely many differ­
entiable solutions of xy' = 4y that all satisfy the condition 
y(a) =b. 

100 
80 
60 
40 
20 

"' 0 
-20 
-40 
-60 
-80 

X 

FIGURE 1.1.9. The graph y = Cx4 for 
various values of C. 
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Suppose that a swimmer starts at the point (-a, 0) on the west bank and swims 
due east (relative to the water) with constant speed vs. As indicated in Fig. 1.2.5, his 
velocity vector (relative to the riverbed) has horizontal component vs and vertical 
component VR. Hence the swimmer's direction angle a is given by 

VR 
tana =­

vs 

Because tan a = dyjdx, substitution using (18) gives the differential equation 

dy v0 ( x
2

) 
dx = vs 1 - a 2 

for the swimmer's trajectory y = y(x) as he crosses the river. 

(19) 

River crossing Suppose that the river is I mile wide and that its midstream velocity is 
vo = 9 mi/h. If the swimmer's velocity is vs = 3 mi/h, then Eq. (19) takes the form 

Integration yields 

dy 2 - = 3(1 -4x ). 
dx 

y(x) = j (3 -12x2)dx = 3x -4x3 + C 

for the swimmer's trajectory. The initial condition y (- i) = 0 yields C = I, so 

y(x) = 3x -4x3 +I. 

Then 

y(~)=3(!)-4(})
3 +1=2, 

so the swimmer drifts 2 miles downstream while he swims I mile across the river. • 

MfJ -~roblems ___ -· _______ u _____ _ 

In Problems 1 through 10, find a function y = f(x) satisfy­
ing the given differential equation and the prescribed initial 
condition. 

dy 
1. dx=2x+l;y(0)=3 

2. dy = (x - 2)2 ; y(2) = I 
dx 

dy 
3. dx = .[X; y(4) = 0 

dy I 
4. dx = x2; y(l) = 5 

dy I 
5. -d = ~;y(2) = -1 

X yX + 2 

6. dy = x.Jx2 + 9; y(-4) = 0 
dx 

dy 10 
7. dx = x2 + I; y(O) = 0 

9. dy = I ; y(O) = 0 
dx ~ 

dy 
8. dx =cos 2x; y(O) = I 

dy 
10. - = xe-x; y(O) =I 

dx 

In Problems 11 through 18,find the position function x(t) of a 
moving particle with the given acceleration a(t), initial posi­
tion xo = x(O), and initial velocity vo = v(O). 

11. a(t) =50. vo = 10, xo = 20 

12. a(t) = -20, vo = -15, xo = 5 

13. a(t) = 3t, vo = 5, xo = 0 

14. a(t) = 2t +I, vo = -7, xo = 4 

15. a(t) = 4(t + 3)2 , vo =-I, xo =I 
I 

16. a(t) = r.-;-;,• vo =-I, xo =I 
vt + 4 

I 
17. a(t) = Ct+ l) 3 , vo = 0, xo = 0 

18. a(t)=50sin5t,vo=-10,xo=8 

Velocity Given Graphically 

In Problems 19 through 22, a particle starts at the origin and 
travels along the x-axis with the velocity function v(t) whose 
graph is shown in Figs. 1.2.6 through 1.2.9. Sketch the graph 
of the resulting position function x (t) for 0 :;: t :;: I 0. 

I 
\ 
' 

I 
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19. 10 ,-------,-----,---,-----.--------, 

20. 

8 

FIGURE 1.2.6. Graph of the 
velocity function v(t) of Problem 19. 

8 

6 
(5, 5) 

4 

6 8 10 

FIGURE 1.2.7. Graph of the 
velocity function v (t) of Problem 20. 

21. 10 ,----,,.----,---r---.---, 

22. 

8 

6 
(5, 5) 

FIGURE 1.2.8. Graph of the 
velocity function v (t) of Problem 21. 

lOr---~--.---.---,---

8 

6 
(3, 5) 

4 6 

FIGURE 1.2.9. Graph of the 
velocity function v (t) of Problem 22. 

Problems 23 through 28 explore the motion of projectiles un­
der constant acceleration or deceleration. 

23. What is the maximum height attained by the arrow of part 
(b) of Example 3? 

24. A ball is dropped from the top of a building 400 ft high. 

25. 

26. 

27. 

How long does it take to reach the ground? With what 
speed does the ball strike the ground? 

The brakes of a car are applied when it is moving at 
100 krn/h and provide a constant deceleration of 10 me­
ters per second per second (mjs2 ). How far does the car 
travel before corning to a stop? 

A projectile is fired straight upward with an initial veloc­
ity of 100 mjs from the top of a building 20m high and 
falls to the ground at the base of the building. Find (a) its 
maximum height above the ground; (b) when it passes the 
top of the building; (c) its total time in the air. 

A ball is thrown straight downward from the top of a tall 
building. The initial speed of the ball is 10 m/ s. It strikes 
the ground with a speed of 60 mjs. How tall is the build­
ing? 

28. A baseball is thrown straight downward with an initial 
speed of 40 ftjs from the top of the Washington Monu­
ment (555 ft high). How long does it take to reach the 
ground, and with what speed does the baseball strike the 
ground? 

29. Variable acceleration A diesel car gradually speeds up 
so that for the first 10 s its acceleration is given by 

dv 2 2 
dt = (0.12)t + (0.6)t (ft/s ). 

If the car starts from rest (xo = 0, v0 = 0), find the distance 
it has traveled at the end of the first 10 s and its velocity at 
that time. 

Problems 30 through 32 explore the relation between the speea 
of an auto and the distance it skids when the brakes are ap· 
plied. 

30. A car traveling at 60 rni/h (88 ft/s) skids 176 ft after it~ 
brakes are suddenly applied. Under the assumption thai 
the braking system provides constant deceleration, wha1 
is that deceleration? For how long does the skid continue~ 

31. The skid marks made by an automobile indicated that it~ 
brakes were fully applied for a distance of 75 m befon 
it came to a stop. The car in question is known to hav( 
a constant deceleration of 20 m/ s2 under these condi­
tions. How fast-in krn/h-was the car traveling wher 
the brakes were first applied? 

32. Suppose that a car skids 15 m if it is moving at 50 krn/l 
when the brakes are applied. Assuming that the car ha: 
the same constant deceleration, how far will it skid if it i: 
moving at 100 krn/h when the brakes are applied? 

Problems 33 and 34 explore vertical motion on a planet wit! 
gravitational acceleration different than the Earth's. 
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33. On the planet Gzyx, a ball dropped from a height of 20 ft 
hits the ground in 2 s. If a ball is dropped from the top of 
a 200-ft-tall building on Gzyx, how long will it take to hit 
the ground? With what speed will it hit? 

34. A person can throw a ball straight upward from the sur­
face of the earth to a maximum height of 144 ft. How 
high could this person throw the ball on the planet Gzyx 
of Problem 33? 

35. Velocity in terms of height A stone is dropped from 
rest at an initial height h above the surface of the earth. 
Show that the speed with which it strikes the ground is 
v = fiih. 

36. Varying gravitational acceleration Suppose a woman 
has enough "spring" in her legs to jump (on earth) from 
the ground to a height of 2.25 feet. If she jumps straight 
upward with the same initial velocity on the moon-where 
the surface gravitational acceleration is (approximately) 
5.3 ftjs2-how high above the surface will she rise? 

37. At noon a car starts from rest at point A and proceeds at 
constant acceleration along a straight road toward point 
B. If the car reaches B at 12:50 P.M. with a velocity of 
60 mijh, what is the distance from A to B? 

38. At noon a car starts from rest at point A and proceeds with 
constant acceleration along a straight road toward point C, 
35 miles away. If the constantly accelerated car arrives at 
C with a velocity of 60 mijh, at what time does it arrive 
at C? 

39. River crossing If a = 0.5 mi and v0 = 9 mi/h as in Ex­
ample 4, what must the swimmer's speed vs be in order 
that he drifts only 1 mile downstream as he crosses the 
river? 

40. River crossing Suppose that a = 0.5 mi, v0 = 9 mi/h, 
and vs = 3 mi/h as in Example 4, but that the velocity of 
the river is given by the fourth-degree function 

- Slope Fields and Solution Curves 
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rather than the quadratic function in Eq. (18). Now find 
how far downstream the swimmer drifts as he crosses the 
river. 

41. Interception of bomb A bomb is dropped from a he­
licopter hovering at an altitude of 800 feet above the 
ground. From the ground directly beneath the helicopter, 
a projectile is fired straight upward toward the bomb, ex­
actly 2 seconds after the bomb is released. With what ini­
tial velocity should the projectile be fired in order to hit 
the bomb at an altitude of exactly 400 feet? 

42. Lunar lander A spacecraft is in free fall toward the sur­
face of the moon at a speed of 1000 mph (mi/h). Its 
retrorockets, when fired, provide a constant deceleration 
of 20,000 mijh2 . At what height above the lunar surface 
should the astronauts fire the retrorockets to insure a soft 
touchdown? (As in Example 2, ignore the moon's gravi­
tational field.) 

43. Solar wind Arthur Clarke's The Wind from the Sun 
( 1963) describes Diana, a spacecraft propelled by the solar 
wind. Its aluminized sail provides it with a constant accel­
eration of O.OOlg = 0.0098 mjs2 . Suppose this spacecraft 
starts from rest at time t = 0 and simultaneously fires a 
projectile (straight ahead in the same direction) that trav­
els at one-tenth of the speed c = 3 x 108 mjs of light. 
How long will it take the spacecraft to catch up with the 
projectile, and how far will it have traveled by then? 

44. Length of skid A driver involved in an accident claims 
he was going only 25 mph. When police tested his car, 
they found that when its brakes were applied at 25 mph, 
the car skidded only 45 feet before coming to a stop. But 
the driver's skid marks at the accident scene measured 
210 feet. Assuming the same (constant) deceleration, de­
termine the speed he was actually traveling just prior to 
the accident. 

45. Kinematic formula Use Eqs. (10) and (11) to show that 
v(t) 2 - v6 = 2a[x(t)- xo] for all t when the accelera­
tion a = d v j d t is constant. Then use this "kinematic 
formula"-commonly presented in introductory physics 
courses-to confirm the result of Example 2. 

Consider a differential equation of the form 

dy 
dx = f(x, y) (1) 

where the right-hand function f(x, y) involves both the independent variable x and 
the dependent variable y. We might think of integrating both sides in (1) with re­
spect to x, and hence write y(x) = J f(x,y(x))dx +C. However, this approach 
does not lead to a solution of the differential equation, because the indicated integral 
involves the unknown function y (x) itself, and therefore cannot be evaluated explic­
itly. Actually, there exists no straightforward procedure by which a general differen­
tial equation can be solved explicitly. Indeed, the solutions of such a simple-looking 
differential equation as y' = x2 + y 2 cannot be expressed in terms of the ordinary 
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of the initial value problem y' = -c fi, y(O) = 0. The constant solution Y! (t) = 0 corre­
sponds to a tank that always has been and always will be empty, while Y2(t) corresponds to a 
tank draining while t < 0 that empties precisely at time t = 0 and remains empty thereafter. 

Thus this example provides a concrete physical situation described by an initial value 
problem with non-unique solutions. • 

IIJ_ Problems 
Find general solutions (implicit if necessary, explicit if conve­
nient) of the differential equations in Problems 1 through 18. 
Primes denote derivatives with respect to x. 

dy 
1. - + 2xy = 0 

dx 
dy . 

3. - = ysmx 
dx 

dy ~ 
5. 2V"i dx = v 1 - y 2 

7. :~ = (64xy) 113 

dy 
9. (l-x2) dx = 2y 

11. y' = xy 3 

13. )'3 dy = (y4 + 1) COS X 
dx 

dy (x- 1)y5 

15. - = --=-----=..:_:_-
dx x 2(2y 3 - y) 

2. dy + 2xy2 = 0 
dx 

dy 
4. (I + x) dx = 4y 

dy 
6. dx = 3.JXY 

dy 
8. - = 2xsecy 

dx 

10. (I+x) 2 dy =(l+y)2 
dx 

12. yy' = x(y 2 + I) 

14. dy = I+ Vx 
dx 1 + fi 

16. (x 2 + 1)(tany)y' = x 

17. y' = 1 +x + y +xy (Suggestion: Factor the right-hand 
side.) 

18. x2 y' = 1 - x2 + y2 - x2 y2 

Find explicit particular solutions of the initial value problems 
in Problems 19 through 28. 

19 dy X ( ) . dx = ye , y 0 = 2e 

20. dy = 3x2(y 2 + 1), y(O) = 1 
dx 

21. 2y dy = x , y(S) = 2 
dx Jx2-16 

dy 
22. dx = 4x 3 y- y, y(1) = -3 

dy 
23. - + 1 = 2 y, y ( 1) = 1 

dx 

dy ( 1 ) I 24. dx = ycotx, y z:rr = z:rr 
dy 

25. X dx- y = 2x2y, y(l) = 1 

dy 
26. dx = 2xy2 + 3x2y 2, y(1) = -1 

27. dy = 6e 2x-y y(O) = 0 
dx 

dy 
28. 2V"i- = cos2 y, y(4) = :rr/4 

dx 

Problems 29 through 32 explore the connections among gen­
eral and singular solutions, existence, and uniqueness. 

29. (a) Find a general solution of the differential equation 
dyjdx = y 2. (b) Find a singular solution that is not in­
cluded in the general solution. (c) Inspect a sketch of typi­
cal solution curves to determine the points (a, b) for which 
the initial value problem y' = y 2 , y (a) = b has a unique 
solution. 

30. Solve the differential equation (dyjdxf = 4y to verify the 
general solution curves and singular solution curve that 
are illustrated in Fig. 1.4.5. Then determine the points 
(a, b) in the plane for which the initial value problem 
(y') 2 = 4y, y(a) = b has (a) no solution, (b) infinitely 
many solutions that are defined for all x, (c) on some 
neighborhood of the point x = a, only finitely many solu­
tions. 

31. Discuss the difference between the differential equations 
(dyjdxf = 4y and dyjdx = 2-JY. Do they have the 
same solution curves? Why or why not? Determine the 
points (a, b) in the plane for which the initial value prob­
lemy' =2ft, y(a) = b has (a) no solution, (b) a unique 
solution, (c) infinitely many solutions. 

32. Find a general solution and any singular solutions of the 
differential equation dyjdx = y JYZ='I. Determine the 
points (a, b) in the plane for which the initial value prob­
lemy' = y JYZ='I, y(a) = b has (a) no solution, (b) a 
unique solution, (c) infinitely many solutions. 

33. Population growth A certain city had a population of 
25,000 in 1960 and a population of 30,000 in 1970. As­
sume that its population will continue to grow exponen­
tially at a constant rate. What population can its city plan­
ners expect in the year 2000? 

34. Population growth In a certain culture of bacteria, the 
number of bacteria increased sixfold in I 0 h. How long 
did it take for the population to double? 

35. Radiocarbon dating Carbon extracted from an ancient 
skull contained only one-sixth as much 14C as carbon ex­
tracted from present-day bone. How old is the skull? 

36. Radiocarbon dating Carbon taken from a purported 
relic of the time of Christ contained 4.6 x 1010 atoms of 
14C per gram. Carbon extracted from a present-day spec­
imen of the same substance contained 5.0 x 1010 atoms of 
14 C per gram. Compute the approximate age of the relic. 
What is your opinion as to its authenticity? 

37. Continuously compounded interest Upon the birth of 
their first child, a couple deposited $5000 in an account 
that pays 8% interest compounded continuously. The in­
terest payments are allowed to accumulate. How much 
will the account contain on the child's eighteenth birth­
day? 
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38. Continuously compounded interest Suppose that you 
discover in your attic an overdue library book on which 
your grandfather owed a fine of 30 cents 100 years ago. If 
an overdue fine grows exponentially at a 5% annual rate 
compounded continuously, how much would you have to 
pay if you returned the book today? 

39. Drug elimination Suppose that sodium pentobarbital 
is'used to anesthetize a dog. The dog is anesthetized 
when its bloodstream contains at least 45 milligrams (mg) 
of sodium pentobarbital per kilogram of the dog's body 
weight. Suppose also that sodium pentobarbital is elim­
inated exponentially from the dog's bloodstream, with a 
half-life of 5 h. What single dose should be administered 
in order to anesthetize a 50-kg dog for 1 h? 

40. Radiometric dating The half-life of radioactive cobalt 
is 5.27 years. Suppose that a nuclear accident has left the 
level of cobalt radiation in a certain region at 100 times the 
level acceptable for human habitation. How long will it be 
until the region is again habitable? (Ignore the probable 
presence of other radioactive isotopes.) 

41. Isotope formation Suppose that a mineral body formed 
'in an ancient cataclysm-perhaps the formation of the 
earth itself-originally contained the uranium isotope 
238 U (which has a half-life of 4.51 x 109 years) but no 
lead, the end product of the radioactive decay of 238U. If 
today the ratio of 238 U atoms to lead atoms in the mineral 
body is 0.9, when did the cataclysm occur? 

42. Radiometric dating A certain moon rock was found to 
contain equal numbers of potassium and argon atoms. As­
sume that all the argon is the result of radioactive decay of 
potassium (its half-life is about 1.28 x 109 years) and that 
one of every nine potassium atom disintegrations yields an 
argon atom. What is the age of the rock, measured from 
the time it contained only potassium? 

43. Cooling A pitcher of buttermilk initially at 25°C is to 
be cooled by setting it on the front porch, where the tem­
perature is 0°C. Suppose that the temperature of the but­
termilk has dropped to 15°C after 20 min. When will it be 
at 5°C? 

44. Solution rate When sugar is dissolved in water, the 
amount A that remains undissolved after t minutes sat­
isfies the differential equation dA/dt = -kA (k > 0). If 
25% of the sugar dissolves after 1 min, how long does it 
take for half of the sugar to dissolve? 

45. Underwater light intensity The intensity I of light at a 
depth of x meters below the surface of a lake satisfies the 
differential equation dljdx = (-1.4)/. (a) At what depth 
is the intensity half the intensity Io at the surface (where 
x = 0)? (b) What is the intensity at a depth of 10 m (as 
a fraction of !0 )? (c) At what depth will the intensity be 
1% of that at the surface? 

46. Barometric pressure and altitude The barometric 
pressure p (in inches of mercury) at an altitude x miles 
above sea level satisfies the initial value problem dpjdx = 
(-0.2)p, p(O) = 29.92. (a) Calculate the barometric pres­
sure at 10,000 ft and again at 30,000 ft. (b) Without prior 

conditioning, few people can survive when the pressure 
drops to less than 15 in. of mercury. How high is that? 

47. Spread of rumor A certain piece of dubious informa­
tion about phenylethylamine in the drinking water began 
to spread one day in a city with a population of 100,000. 
Within a week, 10,000 people had heard this rumor. As­
sume that the rate of increase of the number who have 
heard the rumor is proportional to the number who have 
not yet heard it. How long will it be until half the popula­
tion of the city has heard the rumor? 

48. Isotope formation According to one cosmological the­
ory, when uranium was first generated in the early evolu­
tion of the universe following the "big bang," the isotopes 
235 U and 238 U were produced in equal amounts. Given 
the half-lives of 4.51 x 109 years for 238 U and 7.10 x 108 

years for 235 U, calculate the length of time required to 
reach the present distribution of 137.7 atoms of 238 U for 
each atom of 235 U. 

49. Cooling A cake is removed from an oven at 210°F and 
left to cool at room temperature, which is 70°F. After 
30 min the temperature of the cake is 140° F. When will it 
be 100°F? 

50. Pollution increase The amount A(t) of atmospheric 
pollutants in a certain mountain valley grows naturally and 
is tripling every 7.5 years. 

(a) If the initial amount is 10 pu (pollutant units), write 
a formula for A(t) giving the amount (in pu) present 
after t years. 

(b) What will be the amount (in pu) of pollutants present 
in the valley atmosphere after 5 years? 

(c) If it will be dangerous to stay in the valley when the 
amount of pollutants reaches 100 pu, how long will 
this take? 

51. Radioactive decay An accident at a nuclear power plant 
has left the surrounding area polluted with radioactive ma­
terial that decays naturally. The initial amount of radioac­
tive material present is 15 su (safe units), and 5 months 
later it is still 10 su. 

(a) Write a formula giving the amount A(t) of radioactive 
material (in su) remaining after t months. 

(b) What amount of radioactive material will remain after 
8 months? 

(c) How long-total number of months or fraction 
thereof-will it be until A = 1 su, so it is safe for 
people to return to the area? 

52. Growth of languages There are now about 3300 differ­
ent human "language families" in the whole world. As­
sume that all these are derived from a single original lan­
guage and that a language family develops into 1.5 lan­
guage families every 6 thousand years. About how long 
ago was the single original human language spoken? 

53. Growth of languages Thousands of years ago ancestors 
of the Native Americans crossed the Bering Strait from 
Asia and entered the western hemisphere. Since then, they 
have fanned out across North and South America. The sin­
gle language that the original Native Americans spoke has 
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since split into many Indian "language families." Assume 
(as in Problem 52) that the number of these language fami­
lies has been multiplied by 1.5 every 6000 years. There are 
now 150 Native American language families in the west­
em hemisphere. About when did the ancestors of today's 
Native Americans arrive? 

Torricelli's Law 
Problems 54 through 64 illustrate the application of Torri­
celli 's law. 

54. A tank is shaped like a vertical cylinder; it initially con­
tains water to a depth of 9 ft, and a bottom plug is removed 
at timet = 0 (hours). After 1 h the depth of the water has 
dropped to 4 ft. How long does it take for all the water to 
drain from the tank? 

55. Suppose that the tank of Problem 54 has a radius of 3 ft 
and that its bottom hole is circular with radius I in. How 
long will it take the water (initially 9 ft deep) to drain com­
pletely? 

56. At timet = 0 the bottom plug (at the vertex) of a full con­
ical water tank 16 ft high is removed. After 1 h the water 
in the tank is 9 ft deep. When will the tank be empty? 

57. Suppose that a cylindrical tank initially containing Vo gal­
lons of water drains (through a bottom hole) in T minutes. 
Use Torricelli's law to show that the volume of water in 
the tank after t ~ T minutes is V = Vo [1 - (t/T)f. 

58. A water tank has the shape obtained by revolving the curve 
y = x413 around the y-axis. A plug at the bottom is re­
moved at 12 noon, when the depth of water in the tank is 
12ft. At 1 P.M. the depth of the water is 6ft. When will 
the tank be empty? 

59. A water tank has the shape obtained by revolving the 
parabola x 2 = by around the y-axis. The water depth is 
4ft at 12 noon, when a circular plug in the bottom of the 
tank is removed. At 1 P.M. the depth of the water is 1 ft. 
(a) Find the depth y(t) of water remaining after t hours. 
(b) When will the tank be empty? (c) If the initial radius 
of the top surface of the water is 2 ft, what is the radius of 
the circular hole in the bottom? 

60. A cylindrical tank with length 5 ft and radius 3 ft is sit­
uated with its axis horizontal. If a circular bottom hole 
with a radius of 1 in. is opened and the tank is initially 
half full of water, how long will it take for the liquid to 
drain completely? 

61. A spherical tank of radius 4 ft is full of water when a cir­
cular bottom hole with radius I in. is opened. How long 
will be required for all the water to drain from the tank? 

62. Suppose that an initially full hemispherical water tank of 
radius 1 m has its flat side as its bottom. It has a bottom 
hole of radius 1 em. If this bottom hole is opened at 1 P.M., 

when will the tank be empty? 

63. Consider the initially full hemispherical water tank of Ex­
ample 8, except that the radius r of its circular bottom hole 
is now unknown. At 1 P.M. the bottom hole is opened and 
at I :30 P.M. the depth of water in the tank is 2ft. (a) Use 
Torricelli's law in the form dV/dt = -(0.6)nr2~ 
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(taking constriction into account) to determine when the 
tank will be empty. (b) What is the radius of the bottom 
hole? 

64. A 12 h water clock is to be designed with the dimensions 
shown in Fig. 1.4.10, shaped like the surface obtained by 
revolving the curve y = f(x) around the y-axis. What 
should this curve be, and what should the radius of the 
circular bottom hole be, in order that the water level will 
fall at the constant rate of 4 inches per hour (in./h)? 

4ft 

or 
X= g(y) 

X 

FIGURE 1.4.10. The clepsydra. 

65. Time of death Just before midday the body of an ap­
parent homicide victim is found in a room that is kept at 
a constant temperature of 70°F. At 12 noon the tempera­
ture of the body is 80°F and at 1 P.M. it is 75°F. Assume 
that the temperature of the body at the time of death was 
98.6°F and that it has cooled in accord with Newton's law. 
What was the time of death? 

66. Snowplow problem Early one morning it began to 
snow at a constant rate. At 7 A.M. a snowplow set off to 
clear a road. By 8 A.M. it had traveled 2 miles, but it took 
two more hours (until 10 A.M.) for the snowplow to go an 
additional 2 miles. (a) Let t = 0 when it began to snow, 
and let x denote the distance traveled by the snowplow at 
time t. Assuming that the snowplow clears snow from the 
road at a constant rate (in cubic feet per hour, say), show 
that 

kdx = ~ 
dt t 

where k is a constant. (b) What time did it start snowing? 
(Answer: 6 A.M.) 

67. Snowplow problem A snowplow sets off at 7 A.M. as 
in Problem 66. Suppose now that by 8 A.M. it had trav­
eled 4 miles and that by 9 A.M. it had moved an additional 
3 miles. What time did it start snowing? This is a more 
difficult snowplow problem because now a transcendental 
equation must be solved numerically to find the value of 
k. (Answer: 4:27A.M.) 

68. Brachistochrone Figure 1.4.11 shows a bead sliding 
down a frictionless wire from point P to point Q. The 
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brachistochrone problem asks what shape the wire should 
be in order to minimize the bead's time of descent from 
P to Q. In June of 1696, John Bernoulli proposed this 
problem as a public challenge, with a 6-month deadline 
(later extended to Easter 1697 at George Leibniz's re­
quest). Isaac Newton, then retired from academic life 
and serving as Warden of the Mint in London, received 
Bernoulli's challenge on January 29, 1697. The very next 
day he communicated his own solution-the curve of min­
imal descent time is an arc of an inverted cycloid-to the 
Royal Society of London. For a modern derivation of this 
result, suppose the bead starts from rest at the origin P and 
let y = y(x) be the equation of the desired curve in a coor­
dinate system with the y-axis pointing downward. Then a 
mechanical analogue of Snell's law in optics implies that 

sin a -- = constant, 
v 

(i) 

where a denotes the angle of deflection (from the verti­
cal) of the tangent line to the curve-so cot a = y' (x) 
(why?)-and v = .J2iY is the bead's velocity when it has 
descended a distance y vertically (from KE = imv2 = 
mgy = -PE). 

p 

Q 

FIGURE 1.4.11. A bead sliding down a 
wire-the brachistochrone problem. 

(a) First derive from Eq. (i) the differential equation 

dy=!2a-y 
dx y ' 

where a is an appropriate positive constant. 

(ii) 

(b) Substitute y = 2a sin2 t, dy = 4a sint cost dt in (ii) 
to derive the solution 

x = a(2t- sin 2t), y = a(l- cos 2t) (iii) 

for which t = y = 0 when x = 0. Finally, the subs1 
tution of e = 2t in (iii) yields the standard parametr 
equations x = a(&- sin&), y = a(l -cos&) of tl 
cycloid that is generated by a point on the rim of 
circular wheel of radius a as it rolls along the x-axi 
[See Example 5 in Section 9.4 of Edwards and Pe 
ney, Calculus: Early Transcendentals, 7th editio 
Hoboken, NJ: Pearson, 2008.] 

69. Hanging cable Suppose a uniform flexible cable is su 
pended between two points (±L, H) at equal heigh 
located symmetrically on either side of the x-ax 
(Fig. 1.4.12). Principles of physics can be used to sho 
that the shape y = y(x) of the hanging cable satisfies tl 
differential equation 

(dy)2 
1 + dx ' 

where the constant a = Tjp is the ratio of the cable's te 
sion T at its lowest point x = 0 (where y' (0) = 0) and i 
(constant) linear density p. If we substitute v = dyjd 
dvjdx = d 2 yjdx 2 in this second-order differential equ 
tion, we get the first-order equation 

dv ~ 
a-= v 1 + v2. 

dx 

Solve this differential equation for y'(x) = v(x) 
sinh(xja). Then integrate to get the shape function 

y ( x) = a cosh ( ~) + C 

of the hanging cable. This curve is called a catenary, fro 
the Latin word for chain. 

y 

(-L, H) (L. H) 

Yo 

X 

FIGURE 1.4.12. The catenary. 

1.4 Application The Logistic Equation 

Co Go to goo. gl/ulnPxF to 
download this application's 
computing resources including 
Maple!MathematicaiMATLABI 
Python. 

As in Eq. (7) of this section, the solution of a separable differential equation reducf 
to the evaluation of two indefinite integrals. It is tempting to use a symbolic algeb1 
system for this purpose. We illustrate this approach using the logistic differenti, 
equation 

dx 2 - =ax-bx 
dt 


